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Within a granular material stress is transmitted by forces exerted at points of mutual 
contact between particles. When the particles are close together and deformation of 
the assembly is slow, contacts are sustained for long times, and these forces consist 
of normal reactions and the associated tangential forces due to  friction. When the 
particles are widely spaced and deformation is rapid, on the other hand, contacts are 
brief and may be regarded as collisions, during which momentum is transferred. While 
constitutive relations are available which model both these situations, in many cases 
the average contact times lie between the two extremes. The purpose of the present 
work is to  propose constitutive relations and boundary conditions for this inter- 
mediate case and to solve the corresponding equations of motion for plane shear of 
a cohesionless granular material between infinite horizontal plates. It is shown that, 
in general, not all the material between the plates participates in shearing, and the 
solutions for the shearing material are coupled to a yield condition for the non- 
shearing material to give a complete solution of the problem. 

1. Introduction 
The mechanical behaviour of a flowing granular material results from forces 

exerted at the many points of contact between different particles. These contacts are 
not permanent, but are continually forming and breaking as the assembly of particles 
moves. Unless the particle surfaces are perfectly smooth the forces have both 
tangential and normal components, and the surfaces in contact may, or may not, be 
slipping relative to each other. When the assembly of particles is widely spaced and 
in vigorous motion, individual contacts are of short duration and may be treated as 
‘collisions’, analogous in many ways to the encounters between molecules in a liquid 
or gas. For slow deformations at high solids packing density, on the other hand, 
contacts are semi-permanent, and the normal reaction forces and associated tan- 
gential frictional forces at these sliding contacts are dominant. Of course, everything 
between these extremes is possible and, as we shall see, most situations of practical 
interest are of this intermediate type. Quite recently (Walton & Braun 1985) some 
progress has been made towards direct dynamic modelling of the motion of a 
substantial assembly of particles in situations where mutual contact times may be 
of arbitrary duration. However, computations of this type are practicable only for 
simple situations such as plane shear, where periodicity arguments can be used to 
limit the number of particles whose motion must be followed. To be able to treat more 
complex situations we must still resort to a continuum model of the particle assembly, 
with the influence of mutual interactions represented by suitable constitutive 
relations. 
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Constitutive models for the high density-slow deformation situation originated in 
soil mechanics and have quite a long history (Coulomb 1776; Reynolds 1885; Drucker 
& Prager 1952; Roscoe, Schofield & Wroth 1958; de Jong 1959; Jenike & Shield 
1959). With a few exceptions they are not developed from consideration of motions 
at the ‘ microscopic ’ scale of individual particles, but are essentially empirical 
proposals based on plasticity theory or on models of sliding layers that generate 
frictional forces. More recently the opposite limit of low density-rapid deformation 
has been treated successfully using ideas of kinetic theory. These originated with 
Bagnold (1954), who recognized that inertial effects are dominant in momentum 
transfer under these circumstances. The analogy with the kinetic theory of liquids 
haa been developed for this class of motions by Ackerman & Shen (1982) and by 
Savage and co-workers (Savage & Jeffrey 1981 ; Jenkins & Savage 1983; Lun et al. 
1984), while Haff (1983) independently arrived at similar results by heuristic 
arguments based on a microscopic view of the particle motion. In this work the kinetic 
energy of random motion of the grains plays the role of internal energy, with which 
one may associate a ‘grain temperature’. Since the parameters in the momentum 
equation are strongly influenced by the value of this grain temperature, the 
momentum equation must be solved together with a differential balance of the kinetic 
energy of random motion of the grains. Then the main differences in behaviour 
between a molecular liquid and a granular material in this regime of motion arise 
from the fact that collisions are inelastic in the latter case, so that the grain 
temperature decays to zero unless it is sustained by work done during continued 
deformation of the grain assembly. 

In most situations of practical interest, at  least those that are terrestrially based, 
the compaction of the particle assembly under its own weight is sufficient to ensure 
that stresses associated with semi-permanent contacts are significant, if not dom- 
inant. On the other hand, collisional stresses are rarely insignificant throughout the 
flow field, so a satisfactory description of the motion requires constitutive relations 
valid in the difficult case where interparticle contacts are of intermediate duration. 
In particular, it  seems that such a theory is needed for proper interpretation of even 
the simplest shear experiments, if these extend over a wide range of shear rates 
(Bagnold 1954; Bridgwater 1972; Savage & Sayed 1984; Hanes & Inman 1985). 

The present paper describes a model for motion in this intermediate regime which, 
while essentially empirical and preliminary in nature, does predict some types of 
behaviour not found in either of the limiting cases. Rather than attempting to deal 
directly with particle-particle contacts of intermediate duration, we divide contacts 
into two classes, long and short, then assume that the former may be treated as 
semi-permanent frictional contacts, while the latter are treated as inelastic collisions 
of brief duration. A t  very low particle volume fractions there will also be significant 
momentum transfer by translation of particles between adjacent layers, as in the 
kinetic theory of gases. Thus the total stress transmitted by the particle assembly 
will be the sum of contributions from these sources, which will be referred to as the 
‘frictional ’ and the ‘ collisional-translational ’ contributions respectively. 

The question then arises of how these are to be calculated. As mentioned earlier, 
there exist theories that permit each to be found in the limiting case where it acts 
alone, but it is not clear how these should be modified to model the intermediate case. 
For the present, however, we shall simply assume that no modification is necessary ; 
in other words, that the total stress may be approximated aa the sum of frictional 
and collisional-translational contributions, each calculated aa if i t  acted alone. A 
similar approximation has also been used by Savage (1982) in treating a plane 
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shearing motion. The result is a curiously hybrid theory, combining an empirical 
macroscopic model for the frictional stress with a microscopically based model of the 
collisional-translational stress. Of course, it is unlikely that a truly realistic theory 
could be as simple aa this, but nevertheless it proves possible to solve the resulting 
equations of motion in simple cases, and hence to investigate the relative roles of the 
two limiting stress mechanisms. The solutions also show some qualitatively new 
behaviour which may be characteristic of the intermediate situation. 

In this paper the model is applied to the problem of plane shear of an infinite 
horizontal slab of granular material with bounded thickness. Though simple, this is 
a system in which gravitational compaction of the material under its own weight is 
important, provided the applied normal stress is not too large. As a consequence it 
is shown that the configuration of the steady-state motion may depend on the 
sequence of operations by which it was established, and that not all the material 
necessarily undergoes deformation. Shear stress and normal stress are predicted as 
functions of the overall shear rate, and the relative contributions of frictional and 
collisional-translational stresses are found as functions of position in the shearing 
layer. 

2. Development of the theory 
2.1. Equations of motion 

The equations of motion are obtained by combining the differential equations of mass, 
momentum and energy conservation with the following postulates : 

u = uc + Of, (2.1) 

Here u denotes the total-stress tensor, defined in the compressive sense, while uc and 
of are the collisional-translational and frictional contributions to the stress 
respectively. E denotes the total energy per unit mass of the granular material, which 
is the sum of three components: EMK, the kinetic energy associated with the local 
average velocity u(EMK = flule), Em, the ‘ pseudo-thermal ’ energy associated with 
deviations of the motion of individual particles from the local average, and Eh, the 
true thermal internal energy of the solid material. Em may be replaced by a ‘grain 
temperature’ T defined by EPT = = fT, where 3 is the mean square of the 
velocity fluctuations about u. (Rotational contributions to the pseudo-thermal 
energy have also been considered by C. K. K. Lun & S. B. Savage 1984, private 
communication, but are neglected here.) q is the total-energy-flux vector, which is 
the sum of the true heat flux, qh, and the flux qm of pseudo-thermal energy. The 
former is related in the usual way to the gradient of thermodynamic temperature and 
the effective thermal conductivity of the assembly of solid particles, while the latter 
is similarly related to the gradient in grain temperature, as discussed below. 

The balance equation for the true thermal internal energy is taken to be of the form 

p-= DEh -V*q,-o,: Vu+I, 
Dt 

where p is the bulk density of the particulate material and D/Dt denotes the material 
derivative. The term -uf: Vu represents the rate of working of the frictional 
component of the stress, while I is the rate of dissipation due to the inelasticity of 
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collisions between particles. Implicit in (2.4) is the assumption that work done by 
the frictional component of stress is translated directly into thermal internal energy, 
and does not contribute to the pseudo-thermal energy of the particles. 

Using (2.1) in the momentum equation, and subtracting both (2.4) and the 
mechanical-energy equation from the total-energy equation then leads to the 
following set of equations of change : 

aP -+V*(pu) at = 0, 

Du 
P- = pg-V*(a,+af), Dt 

where g is the specific-gravity force vector. The third of these represents the balance 
of pseudo-thermal energy, and we see that the rate of working of the collisional- 
translational component of stress is the source term, while the inelasticity of collisions 
provides a sink. This reflects our earlier assumption about the form of the true 
thermal-energy balance. Equation (2.7) is identical with the pseudo-thermal-energy 
equation postulated by Jenkins & Savage (1983) and by Haff (1983) for the case in 
which there is no frictional contribution to stress. If the distribution of thermody- 
namic temperature is needed the above equations must be supplemented by (2.4). 
This will be necessary, for example, if parameters in the constitutive relations depend 
significantly on thermodynamic temperature. 

The equations of motion must be closed by constitutive equations for a,, of, qPT 
and I, but before discussing these we shall derive the boundary conditions to be 
satisfied at an interface between the particulate material and a solid surface. 

2.2. Boundary conditions 
Boundary conditions for u and T will be developed by arguments similar to those 
used by Hui et al. (1984) for the simpler case in which there are no frictional 
contributions to the stress. 

A condition on the slip velocity between the particulate material and a bounding 
surface can be obtained by equating the tangential force per unit area exerted on the 
boundary by the particles to the corresponding stress within the particle assembly 
close to the boundary. The force per unit area on the boundary is the sum of collisional 
and frictional contributions. The magnitude of the tangential frictional component 
will be assumed to be N, tan 6, where N ,  is the normal frictional component of stress 
and 6 is the angle of friction between the surface and the particulate material. This 
is simply Coulomb's law of friction applied to the material sliding over the surface. 
The rate of momentum transfer to unit area of the surface by collisions is the product 
of the collision frequency for each particle, (3T)t/s, the average tangential momentum 
transferred per collision, $'npP dau,,/6, and the number of particles adjacent to unit 
area of the surface, l/ac. Here s denotes the average distance between the boundary 
and the surface of an adjacent particle, pp is the density of the solid material, d is 
the particle diameter, u, denotes u-ulI,,ll (the slip velocity), a, is the average 
boundary area per particle, and $' is a 'specularity coefficient ' whose value depends 
on the large-scale roughness of the surface and varies between zero for perfectly 
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FIGURE 1. Control volume for derivation of the energy-flux boundary condition. 

specular collisions and unity for perfectly diffuse collisions. Both 8 and a, are 
functions of the solids volume fraction v, given by 

8 = d [ ( V o / V ) i -  11, (2.8) 

and a, = d2(vo/v)t ,  (2.9) 

where vo is the value of v at closest random packing, assumed to be 0.65 in the present 
work. 

Equating the sum of these frictional and collisional contributions to the component 
of the bulk stress vector in the direction of u, then gives 

(2.10) 

where n is the unit normal from the boundary into the particle assembly. This is the 
desired condition to be satisfied at the boundary. 

The second boundary condition is obtained from energy balances over the control 
volume shown in figure 1 ,  whose upper and lower faces have unit area and whose 
depth will be allowed to tend to zero. In  this limit the total energy balance and the 
balance of true thermal energy are then 

(2.11) 

-n*q,ll+n*qh(,+9-U,'2$ = 0. (2.12) 

- n qI1 - u - (u n)ll + n*q.12 + uw&..l (u2 n) = 0 

and 

Here u, denotes the stress in the solid material of the bounding wall and 2$' denotes 
the frictional force per unit area between the grains and the boundary. 9 is the rate 
of dissipation of pseudo-thermal energy due to inelastic collisions of particles with 
unit area of the boundary. The last term on the left-hand side of (2.12) represents 
frictional heating as particles slide over the boundary. Note that n*u2 = n*u = 9, 
qPT = q-qh, and that n-41, = n*qh(, when the depth of the control volume vanishes, 
where Sb = 23: + 2$ represents the total force per unit area arising from both friction 
and collisions between the grains and the boundary. Then subtracting (2.11) from 
(2.12) gives -n*qp,  = 9 + u d * e ,  (2.13) 

where 2j" is the force per unit area on the boundary due to grain-boundary collisions, 
as given by the second term on the left-hand side of (2.10). The value of 9 is given 
by the product of the energy loss per particleboundary collision, the collision 
frequency per particle and the number of particles adjacent to unit area of the 

(2.14) 
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where e ,  is the coefficient of restitution for collisions between particles and the 
boundary. Substituting for 9 from (2.14) into (2.13) and introducing a constitutive 
expression for qPT then gives an explicit form for the second boundary condition. 

Note that the second term on the right-hand side of (2.13) is negative, and therefore 
represents a source of pseudo-thermal energy. This term, which was omitted by Hui 
et a,?. (1984), is included in a more recent derivation of boundary conditions for 
collisional stresses by Jenkins & Richman (1986). It may be important when slip is 
large, as we shall see. 

2.3. Constitutive relations 

The development of constitutive relations for uc, qPT and I has been the goal of a 
number of recent studies, starting with the pioneering work of Bagnold (1954). For 
the present purpose we shall use a modified form of the relations due to Lun et al. 
(1 984), making the assumption discussed earlier, that the collisional-translational 
contribution to stress can be calculated as though it acted in isolation. Then 

ac = kT(1 f4r]vgo)-~p~V.U]/ 

and 
(2.17) 

are the desired relations. Here S is the deviatoric part of the rate of deformation 
tensor. and 

75m( T/7c)'z 256pv2g0 
87(41-337) d2 ' pb = 5x , (2.18) , A =  

5m( T/7c)i 
1 6 d 2  rl = +e, ) ,  p = 

where m is the mass of a single particle and ep denotes the coefficient of restitution 
for collisions between particles. Equations (2.15)-(2.17) differ from the corresponding 
results of Lun et al. in two respects only. First, a multiplicative factor f(2+a) appears 
in the deviatoric part of a,, where a is a constant of order unity. This factor appeared 
in the constitutive equations of Jenkins & Savage (1983) but was eliminated in the 
more complete analysis of Lun et al. It is convenient to reintroduce it here to provide 
one adjustable parameter, though a must tend to unity when ep  and v approach unity 
and zero respectively, for consistency with the kinetic theory of dilute gases. 
Secondly, the Carnahan-Starling form of the radial distribution go is replaced by 

1 
go = 1 - (v/vo)i  

(2.19) 

a form recently used by C. K. K. Lun & S. B. Savage (1984, private communication) 
which ensures that go --t 00 when v-t vo, and hence constrains v to remain smaller than 
vo. It is interesting to note that, when this form for go is inserted into the constitutive 
equations of Jenkins & Savage (1983), they become essentially equivalent to those 
of Haff (1983). 

While theories of the collisional-translational transport properties are based on 
micro-structural pictures and kinetic-theory arguments, constitutive models for the 
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frictional contribution to stress are largely empirical. For example, the ‘ critical-state ’ 
theory of Roscoe et al. (1958), Schofield t Wroth (1968), and Roscoe (1970) postulates 
a nest of yield surfaces in principal-stress space, one for each value of the bulk density 
of the material. The point on one of these corresponding to a given motion is then 
identified by the plastic-potential-flow rule, which requires the components of the 
inward normal to the yield surface at that point to be proportional to the 
corresponding principal rates of deformation. The constitutive relations are com- 
pleted by requiring the principal axes of stress and rate of deformation to be aligned, 
with the major principal rate-of-deformation axis parallel to the minor (compressive) 
principal stress axis. With these assumptions, specification of the geometry of the 
nest of yield surfaces completely determines the constitutive relations, and these are 
of degree zero in the elements of the rate-of-deformation tensor, as required by the 
rate-independent nature of frictional stresses. Proper choice of geometry for the yield 
surfaces also describes the dilatation observed by Reynolds (1885) to accompany the 
deformation of granular materials, and predicts the Coulomb ( 1776) proportionality 
between shear and normal stresses in plane shearing. Nevertheless, there are features 
of frictional stresses that may not be represented properly by models of this type. 
For example, there is evidence of misalignment of the principal axes of stress and 
rate of deformation, and other types of theory (e.g. de Jong 1959) do not demand 
that these should be aligned. 

Fortunately, for the present purpose it is not necessary to choose between different 
theories of the frictional stress, since we are interested only in fully developed plane 
shear of a non-cohesive material. In  this case the material is in a critical state and 
the shear stress is simply proportional to the normal stress, while the normal stress 
is related to the bulk density. In  fully developed plane shearing, the principal axes 
of stress are inclined at &$ to the direction of motion, and for the material in a 
critical state the ratio of principal stresses cmal/cmin = (1 + sin $)/( 1 -sin $), where 
$ is known as the internal angle of friction. Then if S, denotes the frictional 
contribution to the shear stress and Nf the corresponding contribution to the normal 
stress, it follows that 

(2.20) 

We expect N ,  to increase rapidly with bulk density and to diverge on approaching 
the bulk density vo, and a simple algebraic function with this property is 

S, = Nf sin $. 

Fr 
N,  = 

( V o - V ) n ’  
(2.21) 

where Fr and n are constants. Arguably the constant vo in this equation may be larger 
than that represented by the same symbol in (2.19), but we tentatively set them equal 
to economize in the number of parameters. In accord with our postulate of additivity, 
the above relations, based on observations of slow shearing, are assumed to carry over 
unchanged to give the frictional contributions to  stress even for more rapid shearing, 
where collisional stresses also contribute. 

3. Plane shear of a granular material 
Shear cells, such as those used by Carr t Walker (1967), Bridgwater (1972), Savage 

& Sayed (1984), and Hanes & Inman (1986) take the form of annular troughs, in which 
samples of the material are sheared in the vertical plane. Provisions are made for 
controlling the overall rate of shear and the normal load applied to the sample, and 
for measuring the shear and normal stresses and the depth of the sample. However, 
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FIQURE 2. Nomenclature for plane shear of a horizontal layer. 

velocity and bulk-density profiles within the sample are not measured, so in 
interpreting the results it has been necessary to assume that the material has uniform 
properties and is shearing uniformly. As a test of the proposed constitutive relations 
this situation will be analysed theoretically, and predicted shear and normal stresses 
will be compared with experimental values. Velocity, bulk-density, and grain- 
temperature profiles will also be predicted, so it will be possible to examine the 
validity of the assumption of uniform conditions in the shearing sample. 

3.1. Governing equations 
For simplicity the annular shear cell will be modelled by plane shear of a horizontal 
layer, as shown in figure 2. In  the general case there may be both shearing and locked 
zones of grains, and A denotes the thickness of the shearing region, but for the moment 
consider the case in which all the material shears. The motion is fully developed, so 
all variables depend only on y, a coordinate normal to the plane of shear. Then the 
two components of the momentum equation and the pseudo-thermal-energy 
equation, written in terms of a dimensionless mean velocity u*, grain temperature 
T*, spatial coordinate Y, solids volume fraction v, and frictional normal stress N:(v), 
reduce to 

l + B r  v dY-f,(v)T*-Nf(v) = 0, 
Y 

and 

while the boundary conditions become 

and 
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to be satisfied at Y = 1, together with 

and 

to be satisfied at Y = 0. Here the dimensionless velocity, grain temperature, spatial 
coordinate, and frictional normal stress are defined by 

where N is the total normal stress applied to the upper plate, and uL is the velocity 
of the lower plate. The dimensionless functionsf,(v) tof,(v) are defined in table 1,  
while the dimensionless parameters A-D are given by 

(3.9) 
P SA d A = (g)’, B = %, C = 2, D = tan8-sin$, 

Equations (3.4)-(3.7) come from the boundary conditions (2.10) and (2.13). The 
equations of motion now contain the following dimensionless parameters : A / d ,  v, 
p,ui/N, p p g A / N ,  ep,  e,, $, 8, $’, and Fr/N.  In view of their number a complete 
exploration of the parameter space is not practicable, and we shall be content with 
solutions for a limited set of conditions corresponding to experiments reported in the 
literature. 

The problem defined by (3.1)-(3.7) can be solved analytically when p p g d / N  3 1,  
e, = 1, and no-slip conditions are imposed in place of (3.5) and (3.7) at the boundaries. 
The first of these conditions requires the weight of the sample to be small compared 
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with the normal load applied to the upper plate, so that the total normal stress on 
horizontal planes is approximately constant throughout the sample. The remaining 
two eliminate both generation and dissipation of pseudo-thermal energy at the 
boundaries, and hence ensure that the flux of pseudo-thermal energy vanishes 
throughout the sample. Then T* and v are independent of Y, and are determined 
algebraically by 

T* = A2Pf2(V) (3.10) 
f 5 W  

and 

while the velocity profile is linear, 

u*( Y) = Y-u;. 

Finally, the ratio of shear to normal stress is given by 

(3.11) 

(3.12) 

(3.13) 

If the shearing mass M, per unit horizontal area is given, together with the thickness 
of the shear layer A ,  then v is determined, and (3.11) and (3.13) show that both S 
and N are proportional to ( U J A ) ~  at high shear rates. Equation (3.10) shows that 
the grain temperature is then also proportional to the square of the shear rate. 

For other parameter values the equations must be solved numerically. The 
derivative of (3.1) provides a relation between dv/d Y and dT*/dY which can be used 
to eliminate dv/d Y from the remaining equations and boundary conditions. 
Nonlinear terms in the resulting equations are then linearized about approximate 
value of v, u* and T*, and derivatives are replaced by finite-difference approxima- 
tions, yielding a set of linear equations in the unknown values of u* and T* at the 
grid points. These are solved to generate new approximations to these variables ; then 
(3.1) is solved for the new approximation to v. This whole process is then iterated 
to convergence. The numerical results have been checked against the analytical 
solution described above, and for grids of 11, 21, 31 and 41 points the two agree to 
within 1 %. The changes in computed values of SIN and the mean volume fraction 
of solids are less than 0.5 % for a change from 11 to 31 grid points, but the changes 
in the computed u* and T* profiles are somewhat larger. Accordingly 11 grid points 
are used when only the stress and the mean bulk density are required, but a 31-point 
grid is introduced whenever profiles within the sample are required. With the 11 point 
grid an average of twenty-five iterations is needed for convergence. 

The solution procedure requires values for N, d, uL, and the physical properties 
pp, en, e,, d, $,6 and 4’. Profiles of u*, T* and v are then generated, while the shearing 
mass per unit area and the shear stress are determined from 

and 

ri 
M s = p p d J  vdY 

0 

S du* 
- = ACf2(v) T*t -+ N:(v) sin$. N d Y  

(3.14) 

(3.15) 

3.2. Plane shear with complete shearing 
We shall first assume that the whole of the material between the upper and lower 
plates is shearing ( A  = H), and examine the consequences of this in relation to 
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available experimental measurements. Then M, is equal to the specified total mass 
MT of granular material between unit area of the plates. 

Unfortunately, the solution procedure described at the end of the last section does 
not correspond to the conditions imposed in experiments. These are of two kinds. In  
constant-load experiments the sample mass and the applied normal stress are held 
constant, while the shear stress and the depth of the sample vary as the overall rate 
of shear is changed. In constant-volume experiments, on the other hand, both the 
mass per unit area and the depth of the sample are held constant, while the normal 
load and the shear stress change in response to changes in the overall shear rate. In  
the former case, therefore, a solution must be found by iterating on the value of H 
to match the specified value of MT, while in the latter case the specified MT is matched 
by iterating on the value of N. 

Of the published experimental studies using annular shear cells only that of Savage 
& Sayed (1984) gives sufficient details of the experimental procedure to permit a 
reasonably unambiguous comparison with our theoretical predictions. These authors 
made measurements of the constant-volume type by the following procedure. The 
lower plate was rotated while the upper plate was loaded to apply a known normal 
stress and restrained from rotating by a torque measuring device, which determined 
the shear stress. The speed of rotation was then adjusted until the total depth of the 
sample was such as to give the desired value of the mean bulk density. The load on 
the upper boundary was then changed through a sequence of values, and after each 
change the speed of rotation was adjusted until the sample depth resumed its former 
value, when the shear stress was recorded. This sequence was traversed for both 
increasing and decreasing values of the normal load. 

To match the experiments of Savage & Sayed theoretical calculations were 
performed for samples of 0.0018 m diameter glass beads and 0.001 m diameter 
polystyrene beads. The values of d, # and pp for these materials were given by Savage 
& Sayed, but estimates had to be made for #‘, 6, ep ,  e,, Fr and n. The surfaces of the 
experimental cell were lined with rough sandpaper and, if this is assumed to have 
the same roughness as a layer of the beads themselves, the corresponding value for 
6 is tan-’ (sin#). The coefficients of restitution, ep  and e,, were estimated roughly 
by measuring the height of rebound when glass and polystyrene beads were dropped 
onto glass, polystyrene and sandpaper-covered surfaces. The specularity coefficient 
4’ was arbitrarily assigned the reasonable value 0.6. Experiments of Scarlett & Todd 
(1969) indicate that the critical-state bulk density is almost independent of applied 
normal load for materials of the sort considered here, so the exponent n in (2.21) must 
be large, and a value of 40 was chosen for both materials. Note that, while 
experimental values for some of the above physical parameters were provided by 
Savage & Sayed, others were not, and for these estimated ‘reasonable values’ were 
utilized. Nevertheless, no attempt was made to adjust these values to obtain a better 
fit between theory and experiment for the shear tests. The estimated values were 
retained throughout the calculations. Only two parameters were determined by 
fitting experiments, namely Fr and a. The value for Fr was adjusted until the 
predicted value of M, equalled the experimental value, for a single experimental set 
of values of uL, Nand A .  This value of Fr was subsequently retained in all calculations 
referring to the same material. The complete set of physical-property and parameter 
values for each material is recorded in table 2. The only remaining parameter in the 
theory is a, which appears in (2.15). This was assigned the value 1.6 since a value 
of unity led to predictions of shear stresses that were rather low in comparison with 
measured values. There was no attempt to adjust the value of a for the different 
materials. 
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Property 

d 
eP 
eW 
Fr 
n 

a 
8 

MT 

4 
4' 
4 Y  
P P  

Glass beads Polystyrene beads 

0.0018 m 0.001 m 
0.80 0.87 
0.50 0.50 

3.65 x kg m-l s-* 4.0 x kg/m-l s-* 
40 40 
16.52 kg m-* 
1.60 1.60 

22.9' 22.9' 
25.0' 25.0' 
0.60 0.60 

25.2' 24.7' 
2980 kg 1095 kg m-a 

3.95 kg m-* 

TABLE 2. Sample properties 

Figures 3 and 4 compare calculated normal and shear stresses with the experimental 
measurements, for glass and polystyrene beads respectively. In both cases the 
agreement is good for the normal stresses, which become proportional to the square 
of the overall shear rate when this is large. For the glass beads the predicted shear 
stress agrees quite well with observations at the largest value of the mean volume 
fraction 5,  but the predictions fall progressively below the observations as P decreases. 
Measured values of the shear stress for the polystyrene beads are very scattered, but 
the same behaviour of the predictions is discernible there. 

The results for the polystyrene beads raise a further question. As noted above, the 
measurements of SIN are rather scattered; nevertheless there is a clear trend of in- 
creasing SIN as uL is increased, while in contrast the theoretical predictions decrease 
with increasing uL, just as they do for the glass beads. However, this is not an inherent 
feature of the theory. Thus it is easy to see that the analytical solution, found in $3.1, 
predicts that S I N  is independent of uL in the absence of frictional stresses (FT = 0), 
and by taking FT 9 0 it is not difficult to find solutions for which SIN increases with 
uL. It is therefore possible that an alternative choice of parameter values for the 
polystyrene beads would resolve this discrepancy. Indeed, better agreement between 
theory and experiment could undoubtedly have been obtained by regarding all 
parameters not specified by Savage & Sayed as adjustable, but this would have been 
inappropriate, since they are not, in principle, adjustable parameters, but could be 
determined by suitable measurements independent of the shear test. 

Figure 5(a ,  b) shows predicted profiles of velocity and grain temperature in the 
sample of glass beads, at the highest experimental bulk density, and for three different 
values of the overall shear rate. From figure 5 (a) the slip velocities at  both boundaries 
are seen to increase with increasing shear rate, a8 expected, and the velocity profde 
becomes more nearly linear. At the lowest shear rate, on the other hand, the profde 
is strongly curved, and the material near the lower boundary is hardly shearing at 
all. Figure 5 ( b )  shows that the grain temperature increases on moving into the 
material from each boundary, so in these conditions the boundaries act as sinks for 
pseudo-thermal energy. A t  the lowest overall shear rate the grain temperature is very 
low near the bottom of the sample, where we have already noted that the local shear 
rate almost vanishes. Profiles of v are not shown, since the strong dependence of Nf 
on v ensures that the requisite balances can be satisfied with only small variations 
in the bulk density. 
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FIGURE 3. Predictions of the complete shearing analysis compared with constant-ii experiments of 
Savage & Sayed (1984) using 0.0018 m diameter glass beads. Experimental results: 0,  i j  = 0.522 
(increasing load); 0,0.522 (decreasing load); A, 0.507; 0,0.491; A, 0.477. The arrow F indicates 
the datum point used to determine Fr. 

In  figure 5(c) the ratio of the collisional-translational normal stress to the total 
normal stress is shown, and it is seen that most of the normal load is borne by this 
component in the region of highest grain temperature. However, the frictional 
component increases rapidly with depth and is the larger of the two in all cases near 
the lower boundary. Indeed, as might be expected from the grain-temperature 
profile, at  the smallest shear rate the collisional-translational component contributes 
very little to the total stress near the lower boundary. The increase in the frictional 
contribution on moving down through the sample is a consequence of gravitational 
compaction due to the increasing overburden of the granular material itself. This is 
particularly important when the normal stress applied to the upper plate is com- 
parable with the weight of the sample, as is the c w  here. The curves of figure 5(c) 
show that theories based entirely on frictional stresses, or entirely on collisional- 
translational stresses, are inadequate throughout the range of conditions spanned by 
the experiments. 

The theoretical curves in figures 3 and 4 do not extent to such small values of 
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FIGURE 4. Predictions of the complete shearing analysis compared with constant-? experiments of 
Savage & Sayed (1984) using 0.001 m diameter polystyrene beads. Experimental results: 0, 
i j  = 0.524 (increasing load); 0, 0.524 (decreasing load); A, 0.504; 0, 0.483; A, 0.461. The arrow 
F indicates the datum point used to determine Fr. 

uL/(gd)k as the experimental points. This is no accident of plotting, but reflects the 
fact that, for each value of 3, there is a minimum value of the overall rate of shear 
below which acceptable solutions do not exist in a layer of the depth specified. The 
reason for this is gravitational compaction, as a consequence of which the total 
normal stress increases with increasing depth, though the total shear stress must 
remain constant throughout the layer. At  low overall shear rates not only the total 
normal stress but also its frictional component increases on moving down, so the 
frictional component of the shear stress must also increase. Then, to maintain the 
constancy of the total shear stress, there must be a compensating decrease in the 
collisional-translational component. But this cannot decrease beyond zero without 
a reversal in sign of the velocity gradient du*/d Y and, while solutions of the equations 
of motion exhibiting such a reversal are possible, they do not represent physically 
acceptable behaviour. Instead the material no longer shears below the level a t  which 
du*/dY reaches zero. If there is no yielding the shear stress is free to take values 
smaller than the product of the normal stress and sin#, so maintaining a constant 
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FIGURE 5. (a) Predicted velocity profiles for the sample of glaas beads with 8 = 0.522. Parameter 
values from table 2. Amws indicate values of the abscissa corresponding to the lower-plate velocity. 
(b) Predicted grain-temperature profiles for the sample of glass beads with 8 = 0.522. Parameter 
values from table 2. (c) Predioted ratios of the collisional component of normal stress to the total 
normal stress for the sample of glass beads with 8 = 0.522. Parameter values from table 2. 
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FIGURE 6. Predicted grain-temperature profiles for the sample of glass beads with i j  = 0.522. 
Parameter values from table 2, except that e, = 0.90 and Fr = 2 x kg/ms*. 

shear stress despite continued increases in normal stress presents no problem. When 
tan8 < sin$ the critical condition that identifies the minimum value of uL is the 
vanishing of du*/dY at Y = 0, so figure 5(a)  shows the minimum value of uL/(dg$ 
to be approximately 5.65 for the sample of glass beads with 3 = 0.522. This 
corresponds to the terminus of the F = 0.522 curves in figure 3. Note that the 
experimental points extend to smaller values of the overall shear rate and turn 
downward quite sharply below the termini of the theoretical curves. In this region 
we expect that only part of the sample is shearing ; a situation that will be examined 
in the next section. 

In  figure 5(a) the slip between the granular material and the lower plate is seen 
to vanish when du*/d Y vanishes at Y = 0. This is not generally the case but results 
from the choice tan8 = sin$ in this example. For values of tan6 < sin$, there is a 
non-vanishing slip velocity at the lower plate for the minimum uL. 

As noted earlier the grain-temperature profiles of figure 5 ( b )  indicate that the 
boundaries act as sinks of pseudo-thermal energy. However, this is not always so. 
Figure 6 shows the results of calculations for the glass beads, using the parameter 
values of table 2, except that e, is increased to 0.9, while Fr is decreased to 
2 x s - ~ .  The value of F is 0.522, so the results may be compared with those 
in figure 5 (b). With the more elastic boundaries it is seen that there is a net generation 
of pseudo-thermal energy a t  the upper boundary in all cases. Because of gravitational 
compaction the lower boundary remains a sink except at the highest shear rate, 
when u,/(dg)i = 10.54. However, in this case both boundaries act as sources and, 
correspondingly, the collisional-translational contribution to the stress increases 
once more on approaching the lower boundary. 

We have already explored some effects of changing the values of 8 and e,. Of the 
remaining parameters ep is not easy to measure, yet might be expected to have a 
significant influence on the theoretical predictions. To examine this some calculations 
were repeated for the glass beads, with parameter values from table 2, except that 
ep was increased to 0.85, with a compensating change in FT so that the predictions 
still fitted the single selected experimental point. The results for two values of 3 are 
shown in figure 7, from which i t  is seen that all the curves are steeper with the larger 

kg 
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value of ep. In addition, values of SIN are reduced by about 10% and the curves 
extend to smaller values of u,, when ep  is increased. 

3.3. Plane shear allowing for partial shearing of the sample 
Though i t  was assumed in the last section that the entire sample had somehow 
evolved from a well-compacted rest state into the dilated steady-shearing state, it 
is possible, owing to the yield strength of the material at  rest, that a fully shearing 
state is never achieved. Thus Hanes & Inman (1985), viewing the grains through the 
transparent walls of their shear cell, observed distinct shearing and non-shearing 
layers over certain ranges of values of the applied normal load and the overall shear 
rate. In this section we shall combine our above analysis of plane shear with a yield 
model for the non-shearing material to predict the response of the granular sample 
to motion of its boundaries, without assuming that all the material between these 
boundaries must necessarily be shearing. 

Figure 2 depicts the situation that will be analysed. A total mass MT per unit 
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FIGURE 8. Predicted relation between shear stress and (a) M,/M,, ( b )  A / d  for the sample of glass 
beads with various values of uL and a constant normal stress of 160 kg/ms2 applied to the upper 
plate. 

cross-sectional area is loaded into the gap between the upper and lower plates, and 
a constant normal stress N is applied to the upper plate, while the lower plate is 
constrained not to displace vertically. The lower plate is driven at a constant speed 
uL, while tangential motion of the upper plate is restrained by a shear stress S. The 
goal of the analysis is then to predict the kinematics of motion of the material between 
the plates, the vertical separation between the plates, and the shear stress S, as 
functions of uL and N. In particular, it is required to predict the existence, location, 
thickness and structure of both shearing and non-shearing layers. 

For this purpose we must first model the yield behaviour of the granular material, 
and we shall take the simplest view that i t  behaves as a cohesionless Coulomb 
material, for which the shear stress at yield is proportional to the normal stress. Thus 
S = N tan #y a t  yield, where #y is the angle of friction at initial yield. Note that this 
is not the same as the angle # in (2.20), which determines the ratio of the shear stress 
to normal stress for a layer in fully developed shear, where the material is everywhere 
at  a critical state. 9, depends on the density of packing of the material, while # is 
independent of bulk density in a simple critical-state model. 
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The sequence of configurations adopted by the granular material as uL increases 
depends on the nature of its initial packing between the plates, so this must be 
specified fully. In  the present calculations we shall assume that the material is packed 
at  uniform volume fraction ui, large enough to correspond to an overconsolidated 
state even at the lower plate, where the normal stress is largest. Then $, takes a 
constant value throughout the sample, and tan #, > sin $. Since the normal stress 
is smallest at the upper plate, the shear stress for yield is also smallest there, so with 
the above assumptions shear will be initiated in a layer adjacent to the upper plate, 
as indicated in figure 2. For the computations ui is assumed to be 0.58 and the values 
selected for $,, which are given in table 2, were obtained from initial yield 
experiments on similar materials. They are such that tan#, is slightly larger than 
sin $. These values are largely arbitrary, and consequently the results of the analysis 
should be regarded as indicative of the nature of the behaviour to be expected, rather 
than predictions for quantitative comparisons with experimental results. 

Within the shearing layer the theory of $3.2 applies, but the thickness d of this 
layer is not known a priori. However, recalling the computational procedure that led 
to (3.14) and (3.15), for given Nand uL we may specify a value of A ,  then find profiles 
of u, T and u, and calculate the mass per unit area M ,  within the shearing layer and 
the ratio SIN. Repeating this for a sequence of values of A gives M,/MT and SIN 
as functions of A ; then d may be eliminated between these to give S I N  as a function 
of M,/MT. The results of such computations, for the glass-bead sample whose 
properties are given in table 2, can be found in figure 8 (a) ,  where curves of S I N  are 
shown for various values of uL, at a fixed value 160 kg m-l s - ~  for the applied normal 
stress. Figure 8 (b) shows the same results using A / d  as the independent variable. In  
these computations the lower boundary of the shearing layer is the surface of the 
undeformed lower layer of granular material, which is treated as a solid boundary 
with e ,  = ep ,  tan S = sin 9, and #' = 0.6. The curves intersect the axis M,/MT = 0 
at increasing values of S / N  as uL is increased. Also each curve terminates at some 
upper value of M,/MT and, by examining the complete set of curves, this is seen to 
have two consequences: first, for each value of uL there is a maximum mass per unit 
area that can be maintained in shear and, secondly, for each value of M,/MT there 
is a minimum value of uL below which all the material cannot be maintained in shear. 
This feature has already been encountered in the calculations of $3.2, and is 
attributed to gravitational compaction. Note also that, for a fixed value of M , / M T ,  
SIN may not be a monotone function of uL. Indeed, for M,/MT greater than about 
0.23, SIN can be seen first to increase, then decrease, as uL is increased. 

The boundary of the shearing layer must now be located using the condition that 
the shear stress should match the yield stress for the material at the top of the 
undisturbed lower layer. Since the normal stress at the top of the lower layer is 
N + M , g ,  the yield value of the shear stress there is ( N + M , g )  tan$,, which is 
represented by the straight line in figure 8(a) .  

For illustrative purposes let us now consider the following experiment: the sample 
of glass beads described by table 2 is assembled between the plates with initially 
uniform volume fraction ui = 0.58, which corresponds to an initial plate separation 
Hold = 5.31. The lower plate is then driven at a speed of 0.05 m/s. From figure 8 (a)  
the curve for uL = 0.05 m/s does not intersect the yield line, so no material shears 
in these conditions. Correspondingly, the overall dilatation is zero, and H = H,. The 
reason for this behaviour is that tan 6 < tan $,, so friction between the slowly moving 
plate and the surface of the granular material is insufficient to cause the material to 
yield. If uL is now increased to 0.25 m/s the added contribution of collisional 



86 

- 

P. C. Johnson and R. Jackson 

8 UL 

-g UL 

4 

0.45 - 
- 

I 10.0 1 

I 
I 
J 

I I I I I I  

I I  / 8.0 4 / 

t Increasing UL 

0 1 .o 2.0 3 .o oL 1 .o 2.0 3.0 

UL (m/d UL (m/s) 
FIGURE 9(a).  For caption see facing page. 

components of the stress causes the curve to intersect the yield line at a point 
corresponding to M , / M ,  = 0.12, and figure 8 ( b )  then shows that A / d  is 0.75. The 
corresponding overall dilation is given by H l d  = 5.42. As uL continues to increase 
the shear stress also increases at constant Ms, so more material enters the shearing 
layer, as dictated by the intersections of the curves in figure 8 (a) with the yield line. 
This continues until uL x 1 m/s, but then a further increase in uL at constant M, 
causes a decrease in the shear stress, which drops below the value determined by the 
yield line. Clearly then, this increase in uL cannot force any more material to enter 
the shear layer. Nevertheless, there is no reason why any of the material already 
shearing should cease to  do so, and M J M ,  now remains constant as uL increases 
further, while SIN decreases. Thus there is a finite mass of material per unit area 
that can be induced to shear, no matter how large the lower-plate velocity, and this 
is seen from figure 8(a )  to correspond to M,/M,  x 0.23. 

Now suppose uL is decreased after having reached a large value via the sequence 
of changes just described. Since conditions in the shearing layer start from a point 
below the yield line for the material at  the top of the lower layer, M, does not change 
initially. Furthermore, scrutiny of figure 8 ( a )  shows that S never increases beyond 
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the value defined by the yield line, so no new material is ever drawn into the shear 
layer. However, somewhere between uL = 0.25 m/s and 0.05 m/s the curves cease to 
extend to values of M J M ,  as large as 0.23, and when this happens material that 
was previously shearing must redeposit on the upper surface of the non-deforming 
layer. Then Ms/MT decreases with further decreases in uL, following the termini of 
the successive curves in figure 8(a). 

The response of the system to the sequence of changes described above is shown 
in figure 9(a), where curves of MJMT, SIN,  A/& and HI& are plotted, for both 
increasing and decreasing values of u,,. Though there is a marked hysteresis in M J M ,  
and A/&,  this is not reflected very strongly in the externally measured quantities SIN 
and H / d .  Figure 9 (b) gives the same information for a second sequence of conditions 
which differ from the first only in the value of the applied normal stress N, which 
is increased to lo00 kg m-l s-*. The pattern of behaviour is the same as before, but 
now the hysteresis effects are much more pronounced. 

It is interesting that the limitation on the thickness of the shearing layer is not 
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FIGURE 10. Predictions of the partial shearing analysis compared with constant-F experiments of 
Savage & Sayed (1984) using 0.0018 m diameter glass beads. Parameter values from table 2. 
Experimental results: 0,  P = 0.522 (increasing load) ; 0,  0.522 (decreasing load); A, 0.507; 0,  
0.491 ; A, 0.477. 

a simple phenomenon, but is imposed by different features of the mechanics of the 
system over different ranges of the independent variables. As uL first increases from 
zero the shear stress is insufficient to cause the granular material to yield, and there 
is no shear layer. When the shear layer begins to grow as uL increases beyond these 
small values, the factor that limits the amount of material it may contain is the yield 
strength of the undisturbed material. With further increase in uL this amount reaches 
a constant maximum value, which is determined by the condition that the shear stress 
begins to decrease, rather than increasing, for a small increase in uL at constant M,. 
Finally, when uL is decreased once more to sufficiently small values, the amount 
sheared decreases as uL is decreased. This is a consequence of the fact that the 
constant-uL curves terminate at finite values of MJM,,  which decrease with uL. The 
largest value attainable for M J M ,  depends on the applied normal stress, and is quite 
limited. Thus, when N = 160 kg m-' s - ~ ,  figure 9 ( a )  shows that only about 23% of 
the material can be sheared, no matter how large the value of uL. From figure 9 ( b ) ,  
this fraction increases to about 40 % when N is raised to 10oO kg s - ~ .  
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FIGURE 11.  Predictions of the partial shearing analysis compared with constant-ij experiments of 
Savage & Sayed (1984) using 0.001 m diameter polystyrene beads. Parameter values from table 2. 
Experimental results: 0,  3 = 0.524 (increasing load); 0, 0.524 (decreasing load); A, 0.504; 0, 
0.483; A, 0.461. 

In terms of the particle size, the limiting shear-layer thicknesses correspond to 2.3 
and 3.0 particle diameters respectively, for the light and heavy applied normal loads. 
The validity of a continuum approach is certainly questionable for such thin shearing 
depths, and finite-particle effects would undoubtedly need to be taken into account 
should one want to model quantitatively such shearing motions. The partial-shearing 
analysis should not be dismissed as being meaningless, however, because it describes 
a systematic approach to determine the growth of a shearing zone from a rest state, 
and quite minor modifications of the theory which serve to increase the collisional 
contribution to stress, such as changes in the radial distribution function, could also 
increase the predicted thickness of the shear layer substantially.' The qualitative 
predictions provide us with a description of the importance of yielding and stress 
generation mechanisms, as well as indicating the need for more detailed experimental 
reports of the sample preparation and the shear test procedure. The predicted thin 
shear layers are a result of both the physical nature of the shear test and the predictive 
capabilities of the theory. Theory predicts shear stresses that are too low to induce 
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substantial yielding in the overconsolidated sample, while the geometry of the shear 
cell is such that the influence of gravity limits the maximum shear thickness to k: 7 
particle diameters (for typical applied normal loads) even if the yield strength of the 
material is neglected, as has been observed in all reported annular-shear-cell 
experiments. 

We must emphasize, once more, that the above results refer specifically to a 
situation in which the granular material is initially at a uniform bulk density that 
corresponds everywhere to an overconsolidated condition. Different patterns of 
initial packing lead to different patterns of behaviour in the shear test. For example, 
suppose that the material was initially packed at a uniform density that corresponded 
to an underconsolidated condition under the applied normal stress, even at the upper 
plate. Then it is not difficult to see that the first response to an increasing shear stress 
is yield of a thin layer of material in contact with the lower plate. This layer compacts 
and strengthens as it yields, so deformation soon ceases. Further increases in the 
applied shear stress cause yielding and compaction of other layers, each just above 
the previously compacted one. With continued increase in shear stress, therefore, 
there is continued growth of a layer of material adjacent to the lower plate, with 
uniform yield strength that always matches the applied shear stress. When this stress 
reaches the yield stress corresponding to the normal stress N applied to the upper 
plate, the whole sample has been brought to a condition of uniform yield strength 
(but not uniform density), and further increases in the shear stress simply cause 
matching increases in this strength as a result of compaction of all the material. This 
process continues until the shear stress reaches a value N sin#, at which point the 
material in the uppermost layer is in a critical state, and sustained lateral relative 
motion of the plates becomes possible. An infinitely thin layer adjacent to the upper 
plate is then shearing, and no further change can be induced by continued slow 
shearing. However, if the rate of shear is now increased, collisional-translational 
stresses contribute and a shearing layer of finite thickness develops adjacent to the 
upper plate, while below this the material compacts to a new yield strength that 
matches the total shear stress in the shearing layer. Continuing increases in the rate 
of shear cause more material to enter the shearing layer and, at the same time, the 
yield strength of the non-shearing layer increases to match the total shear stress, while 
remaining spatially uniform. The spatial configuration is similar to that in the first 
case, for which detailed calculations have been reported, but now the whole lower 
layer has a uniform yield strength and is, therefore, at incipient yield, while the bulk 
density varies with depth. 

From this discussion it is clear that a definitive interpretation of experimental test 
results is not possible unless the experimenters have provided details of the procedure 
by which the test sample was prepared. Nevertheless it is interesting to simulate the 
experiments of Savage t Sayed without the restrictive assumption of total shearing 
that was previously invoked. Lacking any detailed information about the initial 
packing of the test sample, we have assumed it to have uniform overconsolidated bulk 
density, so quantitative comparisons of theory and experiment should not be taken 
too seriously. All the parameter values used in generating figures 3 and 4 are retained 
in these calculations. 

The partial-shearing calculations already described [figures 8 and 91 predict H / d ,  
for a fixed value of N, when uL is varied, whereas the experimental procedure varies 
N and uL in order to keep H / d  constant. An analogous procedure may be followed 
computationally, iterating on the value of N for each uL until H equals the desired 
H / d .  The results of such calculations are shown in figures 10 and 11 for the glass and 
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polystyrene beads respectively, together with Savage & Sayed’s experimental points. 
These diagrams should be compared with figures 3 and 4, which show the corre- 
sponding results for the calculations that assume total shearing. At first sight the 
agreement between theory and experiment does not seem to be improved by allowing 
for partial shearing, but closer scrutiny reveals that the curves in figures 10 and 11 
extend down to the smallest values of uL used in the experiments, rather than 
terminating at some higher value where it ceaaes to be possible to shear the whole 
sample. Furthermore, the normal-stress curves in figures 3 and 4 become less steep 
as uL decreases, in contrast to the experimental points which turn downward more 
steeply. The normal-stress curves of figures 10 and 11, on the other hand, maintain 
the steepness of their slope down to the smallest values of uL. Thus the qualitative 
trends of the experimental data are better represented by the analysis that allows 
for partial shearing. 

Separate curves for increasing and decreasing uL are not shown in figures 10 and 
11, though the results of figure 9 (a, b) indicates that hysteresis will be present. The 
computed curves for the two cases lie so close together that they are indistinguishable 
on the scale of the diagrams, so our inclusion of partial shearing does not account 
for the marked hysteresis observed experimentally at the highest value of the bulk 
density. 

It is remarkable that a continuum theory gives fairly sensible predictions of results 
from an experimental apparatus in which the total depth of the sample is only six 
or seven particle diameters, and only a fraction of this material is expected to shear. 
It would be desirable to compare the theory with measurements on much thicker 
samples, under conditions in which the shear layers are also expected to be thicker. 
This could be achieved by decreasing the density of the solid material, using higher 
values of the applied normal load, or working in a gravity-free environment. 

4. Concluding remarks 
The constitutive relations proposed combine the contributions of frictional and 

collisional-translational mechanisms for stress transmission to represent the inter- 
mediate situation, in a way that is essentially arbitrary but has the virtue of 
simplicity. Furthermore, it introduces no extra parameters in addition to those 
belonging to theories of the two separate limiting cases. Predictions of the behaviour 
of granular materials in plane shear are fairly close to the available experimental data 
but, in view of the preliminary nature of the theory and the lack of information 
regarding parameter values for the experimental materials, quantitative comparisons 
are probably less useful than qualitative similarities between observed and calculated 
behaviour. In particular, the analysis of $3.3 indicates that much more detailed 
documentation of experimental procedures will be needed for unambiguous theoretical 
interpretation. It is important that all relevant properties of both particles and solid 
boundaries should be measured independently of the shear tests, that the method of 
assembling the sample and the complete sequence of subsequent changes in applied 
stress and apparent shear rate should be recorded and, if possible, that the apparatus 
should be constructed in a way which permita the sample to be observed so as to 
ascertain which part of it is actually shearing. 
To describe a shear test correctly it is clear that a good constitutive theory for the 

shearing material is not enough. A proper description of the yield properties of 
non-deforming material is also needed, and the interaction between shearing and 
non-shearing material at their mutual interface must be understood. In the present 
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paper this last point has been dismissed by assuming that the interface can be treated 
like a solid boundary, with appropriate values of the angle of friction, coefficient of 
restitution and specularity factor. Then the boundary conditions proposed in $2.2 
describe the influence of the non-shearing material on the adjacent shearing material. 
However, we have neglected any effect of the interaction on the non-shearing material 
itself. In view of the flux of pseudo-thermal energy to the interface this is certainly 
an oversimplification. It seems likely that pseudo-thermal energy will be conducted 
into the non-shearing material, reducing its yield strength, and the extent of this 
reduction will also be influenced by the properties of the solid surface that constitutes 
the second boundary of the non-shearing layer. 

Regardless of its degree of success in describing plane shear, or any other motion 
of a granular material, a theory of the present type can only be regarded as an 
expedient substitute for a proper treatment of particleparticle contact interactions 
of a dissipative nature, with arbitrary duration. 
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